Cookies must be enabled.

Cloud-Modified CESM1 Historical and RCP8.5 5-Member Ensemble

The relative importance of radiative feedbacks and emissions scenarios in controlling surface warming patterns is challenging to quantify across model generations. We analyze three variants of the Community Earth System Model (CESM) with differing equilibrium climate sensitivities (ECS) under identical CMIP5 historical and high-emissions scenarios. CESM1, our base model, exhibits Arctic-amplified warming with the least warming in the Southern Hemisphere middle latitudes. A variant of CESM1 with enhanced extratropical shortwave cloud feedbacks shows slightly increased late-21st Century warming at all latitudes. In the next-generation model, CESM2, global-mean warming is also slightly greater, but the warming is zonally redistributed in a pattern mirroring cloud and surface albedo feedbacks. However, if the nominally equivalent CMIP6 scenario is applied to CESM2, the redistributed warming pattern is preserved, but global-mean warming is significantly greater. These results demonstrate how model structural differences and scenario differences combine to produce differences in climate projections across model generations.
David P. Schneider
Jennifer E. Kay
Cecile Hannay
Related Activities
Project - CESM

Child Datasets

Date Created
2022-03-29 08:16:52
Date Last Updated
2022-09-26 11:10:01
Version Date Publisher Published State Source
1.0 2022-03-29 08:16:52 Teagan King Published